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HEAT-TRANSFER AND PFBSSUm INVESTIGATION 

O F  A FIN-PLATE INTEmEPJZNCE MODEL 

AT A MACH NUMBER OF 6 

By Robert A. Jones 

A 600 swept cylindrical-leading-edge f i n  mounted on a sharp f l a t  p l a t e  w a s  
investigated at  a Mach number of 6 over a range of Reynolds numbers, based on 
free-stream conditions and f i n  leading-edge diameter, from 0.062 x 10 6 t o  

0.77 X lo6. 
of t he  f i n  was varied from 0' t o  30°. 
inated a t  the  leading edge of the  p l a t e  impinged on the  leading edge of the f i n .  
Heat-transfer r a t e s  and pressures were measured on both the  p l a t e  and the  f in .  
The measured data on the  f i n  and p l a t e  are compared with values calculated from 
laminar and turbulent theor ies  f o r  an i n f i n i t e l y  long 60° swept cylinder and 
undisturbed p la te .  

The p l a t e  w a s  maintained at  zero angle of a t tack  and the  yaw angle 
A r e l a t ive ly  weak shock wave which orig- 

The r e su l t s  indicate  t h a t  t h e  primary e f f ec t  of shock impingement and other 
interference was t o  promote t r ans i t i on  t o  turbulent flow on the  f i n  leading 
edge. The corresponding e f f ec t  on the  heat-transfer rate resul ted i n  a range of 
values from approximately one t o  three  times t h e  calculated laminar values, 
depending on Reynolds number. Calculated heat-transfer r a t e s  a t  t h e  stagnation 
l i n e  o f  t he  f i n ,  based on t h e  assumption of a turbulent boundary layer, were i n  
agreement with the maximum measured values. High heat-transfer r a t e s  were also 
measured on the  p l a t e  a t  locations near t h e  impingement of t he  f i n  shock wave. 
I n  t h i s  case, the  high rates occurred a t  a l l  free-stream Reynolds numbers and 
the  maximum values were considerably above those calculated from turbulent f la t -  
p l a t e  theory based on conditions corresponding t o  the  measured loca l  pressure. 

INTROlXTCTION 

The problem of heat t r ans fe r  t o  aerodynamic control  surfaces of hypersonic 
vehicles i s  complicated by mutual interference e f fec ts .  Examples of such phe- 
nomena are t h e  impingement of t he  body shock wave on the  control  surface and the  
corner interference between control  surfaces and body surfaces. 
such interference on t h e  heat-transfer r a t e  a re  d i f f i c u l t  t o  predict  analyt i -  
cal ly .  I n  addition, there  i s  a scarc i ty  of experimental data, par t icu lar ly  data 
showing the  e f f ec t s  of Reynolds number on these phenomena. Previous investiga- 
t i ons  ( fo r  example, r e f .  1) have shown t h a t  t he  heat-transfer r a t e  may be 

The e f f ec t s  of 
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increased considerably by th i s  interference, but additional work appears neces- 
sary fo r  a cmplete  understanding of the  problem. 

The present investigation was undertaken t o  study the  e f fec ts  of mutual 
interference on heat t r ans fe r  of a 600 swept cylindrical-leading-edge f i n  and a 
sharp flat plate .  
range of Reynolds numbers based on free-stream conditions and f i n  leading-edge 
diameter, f k o m  0.062 x 10 6 t o  0.77 X 10 6 . The p la t e  was kept at  zero angle of 
attack and the  yaw angle of t he  f i n  was varied f r o m  Oo t o  30°. 
-rates and surface pressures were measured on both t h e  f i n  and the plate .  

Tests were made a t  a Mach number of approximately 6 over a 
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stat ions on p la te  

s ta t ions on f i n  

specif ic  heat of w a l l  

pressure coefficient 

maximum pressure coefficient 

l oca l  heat-transfer coefficient 

l oca l  heat-transfer coefficient on p la te  without f i n  

theore t ica l  heat-transfer coefficient a t  stagnation l i ne  of an 
i n f i n i t e  unswept cylinder 

length of p l a t e  

free-stream Mach number 

Stanton number, based on free-stream conditions 

Stanton number, based on conditions f o r  measured pressure 

local surface pressure 

loca l  surface pressure on p l a t e  without f i n  

stagnation-line pres sure 

isentropic stagnation pressure 

stagnation pressures behind a normal shock at  f'ree-stream Mach 
number 

free-stream s t a t i c  pressure 
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radius of f i n  leading edge 

Reynolds number, based on free-stream conditions and f i n  
leadi ng-edge diameter 

Reynolds number, based on free-stream conditions and distance 
from p la t e  leading edge 

surface distance from plane of symmetry of f i n  leading edge 
( f ig .  2) 

time 

loca l  s t a t i c  temperature at  outer edge of boundary layer 

stagnation temperature 

recovery temperature 

w a l l  temperature 

distance from leading edge of p la te  ( f ig .  2) 

distance along stagnation l i n e  of f i n  measured from plate-fin 
junction 

yaw angle of f i n  

r a t i o  of specific heat a t  constant pressure t o  specific heat a t  
constant vo lune 

Newtonian flow-deflection angle o f  component of flow normal t o  
f i n  leading edge 

angle between leading edge of f i n  and free-stream direction 

acute angle between component of free stream normal t o  leading 
edge of f i n  and plane of f i n  (s/r 
l i n e )  

location of stagnation 

angular location from stagnation l i n e  

effect ive sweep, 90' - E 

density 

thicknest; of wall 
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MODELS 

T h r e e  sets of models w e r e  used i n  t h i s  investigation: One set contained 
thermocouples, one set contained pressure or i f ices ,  and one set was a dummy (no 
instrumentation). 
alike, s l igh t  differences could have existed between t h e  heat-transfer and pres- 
sure configurations because data f o r  t he  f i n  were obtained by using an instru- 
mented f i n  and a dummy p la t e  whereas data f o r  t he  p l a t e  were obtained by using 
an instrumented p l a t e  and a dummy f in .  

Although care w a s  taken t o  make the  three sets of models 

A photograph of t h e  heat-transfer model (60° swept cylindrical-leading-edge 
f i n  mounted on a sharp-leading-edge f l a t  p l a t e )  i s  presented i n  f igure 1, and a 
sketch showing dimensions and thermocouple and pressure-orifice locations i s  
presented i n  figure 2. 
thickness of 0.030 inch. Thermocouples made of 0.010-inch-diameter iron- 
constantan wire were spot welded to t he  inner surface of t h e  w a l l .  The w a l l  was 
supported by webs which w e r e  located midway between thermocouple s ta t ions.  The 
pressure models were constructed with a th ick  w a l l  containing o r i f i ce s  approxi- 
mately 0.040 inch i n  diameter. 
steel .  

The heat-transfer models w e r e  constructed with a w a l l  

All models were made from type 347 s ta in less  

TUNNEL, TESTING TICJXNIQUE, AND DA!I'A F?JXJCTION 

The investigation was conducted i n  a Mach number 6 low-density hypersonic 
tunnel at the  Langley Research Center. The stagnation pressures used were 
approximately 40, 160, and 640 lb/sq in .  gage with stagnation temperatures 
ranging from 350° F t o  700' F, depending on the  pressure. A complete descrip- 
t i o n  of t h i s  tunnel, as w e l l  as a more complete description of t h e  t e s t i n g  
technique and data-recording and data-reduction methods, i s  given i n  reference 2. 

Heat-transfer data  w e r e  obtained by using a t ransient  t e s t ing  technique i n  
which the  tunnel was s t a r t ed  and brought t o  the  desired operating conditions and 
then the  model was rapidly injected in to  t h e  airstream by a pneumatic piston. 
It was estimated t h a t  t h e  t i m e  required f o r  steady flow t o  be established a f t e r  
t h e  model f irst  entered t h e  airstream was  about 0.05 second. The model remained 
i n  t h e  airstream about 5 seconds; however, heat-transfer data were obtained 
during the  period f r o m  0.1 t o  1.1 seconds after the  model f i rs t  entered t h e  air- 
stream. Because of t he  short t e s t i n g  time, t h e  model w a l l  was  p rac t ica l ly  iso- 
thermal and conduction e f f ec t s  were estimated t o  be neglrlgible. 

Thermocouple outputs w e r e  recorded on magnetic tape by a high-speed analog- 
to-d ig i ta l  data recording system at  a rate of 40 points per second. 
t ransfer  coeff ic ients  w e r e  obtained by f i t t i n g  a second-degree curve to t he  data 
by t h e  method of least squares and computing the  time derivative of temperature 
on a card-programed computer. The heat-transfer coefficient,  neglecting conduc- 
t ion,  i s  given by the  equation 

Heat- 
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where the  temperature poten t ia l  
temperature minus the  measured w a l l  temperature. 
f i n  was calculated by assuming a laminar recovery factor  ( T r  - Te)/(Tt - Te) 
0.85 and isentropic expansion of the  flow from conditions behind a shock wave 
swept pa ra l l e l  t o  the f i n  leading edge t o  the  calculated loca l  surface pressure. 
The method of calculating the  loca l  surface pressure i s  discussed subsequently 
i n  the section en t i t l ed  "Resulks and Discussion." 
temperature was calculated by assuming a laminar recovery factor of 0.83 and 
undisturbed f la t -plate  flow at  the free- stream Mach number. 

T r  - Tw was taken t o  be t h e  calculated recovery 
The recovery temperature on the  

of 

For the p la te  the  recovery 

Pressures were recorded by photographing a mercury manometer board. 
sure data were obtained only a t  a Reynolds number, based on free-stream condi- 
t ions  and f i n  leading-edge diameter, of 0.70 X 10 6 because long t e s t ing  times 
and high pressure levels  were required fo r  the manometer t o  s e t t l e  out. The 
height of the  mercury was read t o  the  nearest 0.03 inch. 

Pres- 

RESULTS AND DISCUSSION 

Flow Pattern 

Schlieren photographs of the  flow are presented i n  figure 3 .  These photo- 
graphs show tha t  t he  strength of t he  leading-edge shock wave for  the  p la te  with- 
out f i n  i s  different  from t h a t  f o r  the p la te  with f in .  
photograph, a p la te  instrumented with pressure or i f ices  was used; whereas, i n  the 
"plate with fin" photographs, a dummy pla te  was used. 
i n  p la te  leading-edge thickness i s  believed t o  be too small t o  cause the  differ-  
ence i n  shock strength. A comparison of the  leading-edge shock wave f o r  t he  
p la te  without f i n  with t h a t  f o r  the  p l a t e  wtth f i n  can be seen more clear ly  i n  
the  sketch of figure 4, which i s  a sketch of t he  schlieren photographs fo r  the 
f i n  a t  zero yaw. The shock wave fo r  the  p la te  without the f i n  i s  shown by the 
dashed l ine .  The difference i n  the  i n i t i a l  angle of the  two shock waves i s  
approximately 7 O .  
shape of the p l a t e  leading-edge shock wave remains prac t ica l ly  unchanged. The 
mechanism by which the  strength of this  shock was different  fo r  the  p l a t e  with 
f i n  and the  p l a t e  without f i n  i s  not understood; however, the resu l t s  of t h i s  
investigation a re  believed t o  be va l id  even though t h i s  mechanism cannot be 
explained. In  order t o  investigate the  cause of t h i s  phenomenon, some schlieren 
photographs were made f o r  d i f fe ren t  alinements of the p l a t e  re la t ive  t o  the  f ree  
stream. A 1/2O expansion of the  flow over the  p la te  was found t o  resu l t  i n  a 
change i n  the  shock shape f o r  t he  p l a t e  with or  without t he  f in ,  although the  
change was more pronounced when the  f i n  was present. A small difference i n  
alinement of t he  p la tes  may therefore have contributed t o  the  difference i n  
shock shapes. 

I n  the  "plate no f i n "  

However, any difference 

A s  the  y a w  angle of the  f i n  i s  increased (see f i g .  3) ,  the  

A t  the  intersect ion of t he  p l a t e  shock wave and the f i n  shock wave, a f a in t  
l ine,  which is thought t o  be a vortex l ine,  was evident i n  a l l  the schlieren 
photographs. The p la te  shock wave, which i s  re la t ive ly  weak compared t o  the f i n  
shock wave, appears t o  pass undisturbed through the  fin shock and t o  intersect  
the  f i n .  T h i s  apparent phenomenon i s  due t o  the  greater width of t he  p la te  shock 
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wave (approximately 7 inches) and i s  ac tua l ly  t h e  undisturbed p l a t e  shock which 
l ies  outside t h e  region of interact ion with t h e  f i n .  
t h e  thermocouple and pressure o r i f i ce  s ta t ions  of t h e  f i n .  The two shock waves 
in te rsec t  nearest s t a t ion  B. 

A l s o  shown i n  f igure 4 are  

Pressure Distributions .on Fin 

Pressure d is t r ibu t ions  on the  f i n  are presented i n  f igure 5 as the  r a t i o  
p/pt,a p lo t ted  as a function of s/r, where p i s  the  l o c a l  measured pressure, 

i s  the  stagnation pressure behind a normal shock at  the  free-stream Mach 
number, and s/r i s  t h e  distance from t h e  plane of symmetry of t he  f i n  leading 
edge. The theo re t i ca l  curve shown i n  t h i s  f igure  was computed from modified 
Newtonian theory, which predicts  t he  d is t r ibu t ion  over t he  leading edge and 
downstream as 

where 6 i s  the  Newtonian deflection angle of t h e  component of flow norma t o  
the  swept leading edge. This equation can be rewri t ten as 

where 
t o  the  leading edge and 
leading edge computed from perfect-gas theory as follows: 

Oeff i s  t he  complement of t he  flow deflection angle i n  a plane normal 
ps. i s  the  stagnation-line pressure of the  cyl indrical  

A comparison of pressure d is t r ibu t ions  computed by t h i s  method with experimental 
data for  a TO0 swept cylindrical-leading-edge s lab a t  a Mach number of 6 i s  
given i n  reference 3 and indicates good agreement f o r  f i n  leading edges with no 
shock-wave impingement. 
and (4) was used f o r  determining the  recovery temperature 

The pressure d is t r ibu t ion  computed by equations ( 3 )  
T r  of the  f i n  

(es.  (1)). 

Figure 5 shows experimental pressures as much as 30 percent higher than 
theore t ica l  pressures a t  s ta t ion  B ( the s t a t ion  nearest the  intersect ion of the  
shock waves fo r  p = O o )  and a l so  shows pressures somewhat higher than those 
predicted by theory a t  s ta t ions  A and C. The f a c t  t h a t  t he  pressures a t  sta- 
t ions  D and E are i n  agreement with the  theo re t i ca l  curve indicates t h a t  the  
flow was similar t o  that of an i n f i n i t e l y  long swept cylinder a t  those s ta t ions.  
For p 2 1?O, t he  peak pressures a t  s t a t ion  C are greater than at s ta t ion  B, but 
the  stagnation l i n e  i s  near 

6 

8 = 30° (s/r x 0.5) and the  shock impingement 



might be closer t o  s ta t ion  C. A s  the  angle of yaw increases, the pressure a t  
s ta t ion  A fo r  0 = goo 
dicated by theory and lower than the pressure a t  the other s ta t ions for  8 = goo. 
This indicates separation on the f i n  near the fin-plate juncture. The or i f ice  of 
s ta t ion  A f o r  

(s/r = 1.56) becomes considerably lower than tha t  pre- 

0 = 90' was very near t h i s  f in-plate juncture. 

Heat-Transfer Distribution on Fin 

The heat-transfer data on the  f i n  are  presented i n  figures 6, 7, and 8 a s  
the  r a t i o  h/hA4, where h i s  the  loca l  experimental value of the  heat- 
t ransfer  coefficient based on a laminar recovery' factor and i s  the theo- 
r e t i c a l  laminar heat-transfer coefficient fo r  the stagnation l i n e  of an unswept 
c i rcular  cylinder at  free-stream conditions. The coefficient hA-0 was com- 
puted by the  method of reference 4. The curves shown i n  figure 6 represent a 
theore t ica l  laminar heat-transfer-coefficient dis t r ibut ion which was computed 
f'rom the  following equation: 

hA+ 

'"r - Tw 

q 
was obtained from reference 4 and the  r a t i o  (h)%ff 

hA=O (9) eef =o 
where t h e  r a t i o  

was obtained by the method of reference 5 by using the  theore t ica l  pressure dis- 
t r ibu t ion  from equations ( 3 )  and (4 ) .  

Previous investigations i n  t h i s  same f a c i l i t y  have indicated tha t  t he  flow 
over a f i n  leading edge with no interference would be laminar fo r  the Reynolds 
numbers of this investigation. 
t he  leve l  and dis t r ibut ion of heat t ransfer  t o  the leading edge of a swept f i n  
could be reasonably predicted by the  method used herein. 
heat-transfer-coefficient r a t io s  of figure 6 fo r  the leading edge a re  apparently 
a resu l t  of the p l a t e  shock-wave impingement on the f i n  and the  increased inter-  
ference between the f i n  and t h e  p la te .  

Reference 3 shows tha t  f o r  laminar flow, both 

Therefore, the high 

Similar large increases i n  heat t ransfer  due t o  shock-wave impingement have 
been observed by other investigators; for  example, reference 1 presents measured 
heating ra tes  along an unswept c i rcu lar  cylinder a t  a Mach number of 4.44 and a 
Reynolds number, based on free-stream conditions and cylinder diameter, of 
1.05 X 10 . The measured values i n  the  region of shock-wave impingement were 
approximately three times the calculated laminar values a t  the stagnation l ine .  
Since t h i s  cylinder was unswept, it i s  reasonable t o  expect that the  flow a t  the 
stagnation l i n e  would have been laminar i n  the  absence of shock-wave impingement. 
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I n  reference 6 a re  presented some heat-transfer r e su l t s  on a 60° swept cyl- 
inder protruding from an 8O wedge a t  a Mach number of 4.15. The measurements 
indicated t h a t  the  flow over the  cylinder, including the  stagnation 
turbulent, and the  data were i n  agreement with calculated turbulent 

point, was 
values i n  



the  region of shock impingement. No e f fec t  of the shock impingement was detected 
i n  e i ther  the  stagnation-line pressure o r  heat-transfer measurements. 

I n  view of t h e  different  effects  of shock-wave impingement on heat transfer,  
depending on whether the basic undisturbed flow was laminar or  turbulent, which 
were  reported i n  the  previously mentioned experimental investigations (refs. 6 
and 7), it i s  interest ing t o  notice the  e f fec t  on heat t ransfer  of varying the  
Reynolds number i n  the  present investigation. 
coefficients of the  f i n  leading edge which a re  due t o  the  shock-wave impingement 
and p la te  interference varied *om approximately one t o  three times the calcu- 
la ted laminar values, depending on Reynolds number. The increase was largest  a t  
the  highest Reynolds number. For comparison, the heat-transfer coefficients of 
the stagnation l i n e  calculated by the  method of reference 4 fo r  turbulent flow 
are  shown by the  t i c k s  on the ordinate of f igure 6(a) .  
h/hA* of 0.497, 0.742, and 1.103 correspond t o  values of R D , ~  of 0.062 X lo6, 
0.21 X lo6, and 0.77 X 10 6 , respectively. 
w a s  very l i t t l e  difference between the calculated laminar and turbulent values; 
however, at  the  highest Reynolds number this difference i s  large. The data f o r  
the  highest Reynolds numbers are higher than t h e  calculated turbulent values but 
these calculations were based on the calculated pressure of equation (4) rather 
than the measured pressure. If the  measured pressure were used, t he  resul t ing 
value fo r  the highest Reynolds number would be about 1.33 instead of the indi- 
cated value of 1.105. The agreement between the  measured coefficients and the 
calculated turbulent values indicates t ha t  the  primary effect  of the shock 
impingement and fin-plate interference was t o  promote t r ans i t i on  t o  turbulent 
flow. Since reference 6 found no effect f o r  a shock impinging on a turbulent 
boundary layer, the calculated turbulent heat-transfer coefficients might serve 
as  an upper l i m i t  f o r  the effect  of such interference. Additional experimental 
data f o r  various shock strengths and Mach numbers, as well as f o r  laminar and 
turbulent boundary layers, over a wide range of Reynolds numbers are  necessary 
f o r  a complete understanding o f t h i s  phenomenon. 

The increases ' i n  the  heat-transfer 

The three values of 

A t  the lowest Reynolds number there 

A cross plot of the  data of figures 6(a)  and 6 ( f )  for  the stagnation l ine  
(eeff = O o )  i s  given i n  figures 7(a) and 7(b). 
are  the fa i red  values taken from figures 6(a)  and 6 ( f ) ,  respectively. 
fo r  both 0' and 2 3 O  yaw are  similar. 
t o  be strongly influenced by separation and other interference resul t ing from 
the  fin-plate juncture. 
larger  heat-transfer coefficients than do the  data f o r  y = 1 inch, P = Oo 
figure 7(a); t h i s  r e su l t  i s  believed t o  be due t o  t h e  increased interference 
from the fin-plate juncture a t  the higher yaw angle. Since the data fo r  the  
lower Reynolds numbers are approximately equal and tend t o  approach the calcu- 
la ted laminar value as distance along the leading edge i s  increased, l i t t l e  
effect  of e i ther  shock-wave Fmpingement o r  f in-plate  interference i s  indicated. 
However, the data f o r  the highest Reynolds number have a peak near the  shock- 
wave impingement point with values fox both yaw angles approximately equal t o  
those calculated by  assuming a turbulent boundary layer and measured pressures. 
I n  addition, at  y = 3 inches, the values f o r  t he  highest Reynolds number are  
s t i l l  much larger  than values calculated from the  laminar theory. 

The data of figures 7(a) and 7(b) 
The trends 

The data  of s ta t ion  A (y = 1 inch) appear 

of f igure 7(b) show The data for  y = 1 inch, p = 2 5 O  
of 



An increase i n  the  angle of yaw causes a sh i f t  i n  t h e  s/r posit ion of t he  
stagnation l i n e  and a small increase i n  the  calculated value 
stagnation l ine .  
near the  stagnation l ine,  but otherwise the  data of t h e  leading edge a t  angle of 
yaw show the  same trend as they did a t  zero yaw. A l s o ,  with an increase i n  the 
y a w  angle, the  heat-transfer coefficients f o r  the slab portion of t he  f i n  
(s/r > 1.56, f ig .  6) increase considerably above those determined by theory and 
the  highest values occur a t  t he  highest Reynolds numbers. 
ence 3 ,  f o r  which there  was no shock-waye hpingement on the  f i n  leading edge, 
show these same general trends.  The high heating r a t e s  on the  slab are there- 
fore  probably due t o  a combination of the  fin-shock impingement on the  p l a t e  and 
the  corner interference between the  f i n  and p l a t e  ra ther  than t o  the  shock 
impingement on the  f i n  leading edge. 

h/hh,o a t  the  
There was a corresponding small increase i n  the  measured values 

The data of refer- 

The f i n  was  a l so  tes ted  a t  negative angles of yaw so tha t  the instrumented 
The data portion of the  f i n  was i n  the  expansion region on the  leeward side. 

f o r  values of p 
s/r = 0 
cussed; however, the data f o r  large values of 
on t h e  windward side and show l i t t l e  o r  no variation with Reynolds nmiber. 

from -5' t o  -13O are shown i n  figure 8. The data near 

are, of course, lower than 
overlap the  data of figure 6 and show the  same resu l t s  as already dis- 

s/r 

Pressure and Heat-Transfer Distribution on Pla te  

The pressures on the  p la te  without the f i n  are presented i n  f igure 9. The 
The data agree sca t te r  of the data i s  within the  accuracy of the measurements. 

with the  calculated free-stream pressure based on the Mach number calibraticm 
of the  tunnel. 

Figure 10 shows the  heat-transfer dis t r ibut ion on the  p l a t e  without the f i n  
and a theore t ica l  laminar value calculated by the reference temperature method 
of reference 7. A large increase i n  heat-transfer r a t e  occurs at  the highest 
Reynolds number and it begins a t  
bulent flow. The t rans i t ion  Reynolds number, based on free-stream conditions 
and p la te  length, i s  about 5 x .lo6. 

x/Z = 0.6, probably due t o  t r ans i t i on  t o  tur- 

The pressure and heat-transfer data fo r  the p la te  with the f i n  are  presented 
i n  figure 11 as the r a t i o  of the measured values with the f i n  t o  the  measured val- 
ues without the f i n  ( f igs .  9 and 10). 
data without the f i n  ra ther  than on a calculated laminar value, the increased 
heat t ransfer  due t o  t rans i t ion  shown i n  figure 10 fo r  R D , ~  = 0.77 x lo6 
x/2 > 0.5 
the high Reynolds number data of figure 11 f o r  
figure l l ( g )  a t  R D , ~  = 0.77 X 106 
is lower than the r a t i o  f o r  R D , ~  = 0.21 x lo6; however, i f  the data f o r  both 
Reynolds numbers had been based on a theoret ical  laminar value, the r a t i o  f o r  the 
high Reynolds number data would have been higher. 

Since t h i s  r a t i o  is  based on the measured 

and 
has the e f fec t  of an apparent reduction i n  the r a t i o  h/hno f i n  fo r  

For an example, see x/Z > 0.5.  
x/2 = 0.7. Here, a t  s ta t ion  By the r a t i o  f o r  

The effect  of t h e  fin-plate interference, indicated by figure 11, was t o  
decrease the  pressure r a t i o  at  some locations and t o  increase it i n  other loca- 
t ions.  

9 

There was a decrease i n  pressure r a t i o  ahead of the f i n  (x/2 < 0.3) a t  



a l l  angles of yaw. It was suggested previously tha t  t he  increase i n  the leading- 
edge shock strength f o r  the  p la te  with the f i n  ( f ig .  4) m i g h t  have-been caused 
by a small er ror  i n  alinement of the  plate .  A small expansion of the  flow over 
the  p la te  might cause a separation bubble at the leading edge of t he  p la te  fol-  
lowed by an expansion which caused the  shock curvature. 
rect ,  the  l o w  pressure r a t i o s  for  x/2 < 0.3 
The largest  pressure r a t i o s  usually occurred fo r  locations between the f i n  and 
t h e  impingement of t h e  f i n  shock wave. When the  f i n  w a s  yawed, however, there  
were no two or i f ices  located the  same with respect t o  t h e  fin-plate juncture. 

If this premise i s  cor- 
might be due t o  such an expansion. 

Photographs showing the  f i n  shock-wave impingement on a p l a t e  f o r  a TO0 
swept f i n  are presented i n  figure 12. These photographs were made by placing 
the  f i n  on a front-surfaced mirror and using a two-pass schlieren system. It 
w a s  extremely d i f f i c u l t  t o  get photographs of good qual i ty  because of s t ra ins  
i n  the  mirror. The photographs shown were obtained as a par t  of an investiga- 
t i o n  f o r  a TO0 swept cylindrical-leading-edge f in ;  however, since a loo differ-  
ence i n  sweep angle should not s ignif icant ly  alter the pat tern of shock impinge- 
ment on the plate,  f igure I2  could be used t o  estimate the shock-impingement 
location for  t he  present investigation. 

Large heat-transfer-coefficient r a t io s  f o r  t he  p l a t e  are shown i n  figure 11. 
Comparisons with measurements taken from figure I2 indicate t h a t  the  larger  
r a t io s  occurred at  locations near the f i n  shock-wave impingement. The general 
t rend of higher heat-transfer-coefficient r a t io s  at the  higher Reynolds numbers 
indicates t h a t  the shock-wave impingement may promote t rans i t ion  t o  turbulent 
flow; however, separation and corner interference e f fec ts  also influence the  
data and the  e f fec ts  of these different  factors  are  d i f f i c u l t  t o  identi-. A 
p lo t  of Stanton number as a f'unction of Reynolds number ( f ig .  13) shows more 
clear ly  where the  increase above laminar theory occurs. 

Figure 13(a) presents data for  the  p l a t e  with the  f i n  a t  zero y a w  and com- 
pares these data with the  r e su l t s  calculated from laminar and turbulent theories 
by the  reference temperature method (ref. 7). 
i s  based on free-stream conditions. 
occurs a t  three d i s t inc t  values of %,m and depends on t h e  value of RD?~. 
Measurements taken from figure I 2  indicate t ha t  the shock-impingement location 
i s  at about x/2 = 0.5 f o r  s ta t ion  b. The values of Rx,m corresponding t o  
x/2 = 0.5 are approximately 0.31 X 10 , 1.05 X lo6 f o r  values 

numbers corresponding t o  the marked increase above laminar theory f o r  s ta t ion  b 
shown i n  figure l3(a)  are found t o  agree with the shock-impingement Reynolds 
numbers determined from figure 12. The f ac t  t h a t  the  increase begins a t  the 
point of shock-wave impingement, regardless of free-stream Reynolds number, i s  
an indication tha t  it was primarily the shock impingement which caused t h e  
increase since sepazation and other interference e f fec ts  would probably occur 
at  different  x/Z locations and different free-stream Reynolds numbers. How- 
ever, investigations i n  which shock-wave impingement e f f ec t s  can be studied 
without the other interference e f fec ts  which occurred i n  t h i s  study are  neces- 
sary f o r  a complete understanding of these phenomena. 
a l so  indicate tha t  these high heat-transfer rates were i n  some cases considerably 

"he Stanton number of figure l3(a)  
The marked increase above laminar theory 

6 6 and 3.83 X 10 
of R D , ~  of 0.062 X lo6, 0.21 X lo6, and 0.77 X 10 %, , respectiyely. The Reynolds 

The data of figure l3(a) 
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above calculated turbulent values and t h a t  these high ra tes  occurred at  a l l  
free-stream Reynolds numbers. 

A s  the angle of yaw of t he  f i n  was increased, the pressure ra t ios  
fo r  t h e  p la te  increased ( f ig .  ll). Therefore, it was thought t h a t  Stanton num- 
bers fo r  a correlation of t h e  type shown i n  figure 13 should be based on condi- 
t ions  corres onding t o  the  measured loca l  pressure. Such a correlation i s  shown 
i n  figure 13 P b)  f o r  a yaw angle of 25'. I n  t h i s  p lo t  the  Stanton numbers RSt,p 
were computed fo r  conditions obtained by assuming that the free-stream flow was 
isentropically compressed t o  the  measured loca l  pressures f o r  RD,,, = 0.70 X 106 
shown i n  figure ll(f). 
with the exception of t h e  three very high heating r a t e s  shown by the  c i rc les  
that corres ond t o  a location extremely near t he  fin-plate juncture a t  
( f ig .  ll(f)r. These data may possibly have been influenced by conduction from 
the f in .  

The trends shown are similar t o  those of figure l3(a) 

x/2 = 0.5 

An experimental investigation of heat t ransfer  and pressure i n  the  inter-  
ference region of a 60° swept cylindrical-leading-edge f i n  mounted on a sharp 
flat p l a t e  a t  a Mach number of 6 over a range of Reynolds numbers, based on free- 
stream condltions and f i n  leading-edge diameter, from 0.062 x 106 t o  0.77 X lo6 
indicated t h e  following resul ts :  

1. The shock-wave impingement on t h e  leading edge of the f in ,  as well as  
other fin-plate interference effects ,  caused increases i n  heat transfer t o  the  
leading edge of the f i n  of approximately one t o  three times the  calculated l a m i -  
nar values, depending on Reynolds number. The increase was Largest a t  the  
highest Reynolds number. 

2. Comparisons of t he  data with values calculated by assuming a turbulent 
boundary layer  indicated that t h e  primary effect  of the shock-wave impingement, 
as w e l l  as other interference effects ,  was t o  promote t rans i t ion  t o  turbulent 
flow and tha t  calculated values based on the  assumption of turbulent flow might 
be used as an upper l i m i t  f o r  estimating the  heat-transfer rates t o  the f i n  
leading edge. 

3 .  Pressures and heat-transfer coefficients higher than f la t -p la te  theo- 
r e t i c a l  values w e r e  mearmred on the  plate .  
appeared t o  be f o r  locations near t h e  impingement of the f i n  shock wave. 
high heat-transfer rates occurred at  a l l  free-stream Reynolds numbers and the 
maxi" values were considerably above those calculated from turbulent f l a t -  
plate  theory based on conditions corresponding t o  the measured loca l  pressure. 

The highest heat-transfer ra tes  
These 

k n g l e y  Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hapton, Va., March 5 ,  1964. 
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(b) P = 30'. L- 64 -431 

Figure 12.- Schlieren photographs of shock impingement on plate. A = 70'; R D , ~  E= 0.2 x lo6. 
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